GVP SERIES

GVP 275

231/400V - 50Hz

Features and Benefits

- Half Century Experience in Generator Manufacturing
- Diesel Engines with Advanced Technology and Quality
- Alternators with Advanced Technology and Quality
- Control Panel Suitable for Flexible Application
- High Quality and Reliable Technology
- Patented Compact Designed and Soundproof Canopy
- Suitable for Heavy-Duty
- Durability
- Wide Range of Affordable Spare Parts

- Low Noise Level
- Low Exhaust Emission
- Low Operating Cost
- Low Fuel Consumption
- Low Oil Consumption
- Tropical 50°C Radiator
- Fuel Filter with Water and Particle Separator
- First Class Product Support
- Global Technical Service and Maintenance Support

					Generator C	Seneral Informa	tion						
Generator	Frequency	Voltage	Power Factor	Speed	Diesel Er	ngine		Alternator	•	Type of	Gene	erator Ou	utput
Model	Hz	V	CosQ	rpm	Brand	Model	Brand	Model	Series	Operation	kVA	kW	Α
GVP 275	50	231/400	0,8	1500	VOLVO PENTA	TAD 734 GE	GENPOWER	GNP	GNP 270 L1	Stand By Prime Continuous	275,0 250,0 175,0	220,0 200,0 140,0	397,4 361,3 252,9

VOLVO PENTA Diesel Engine Technical Parameters and Matching Parameters

Diesel Engine Main Technical Parameters

_				
14	Δ	n	ra	

Number of Cylinders		6
Configuration		Vertical, in line
Aspiration		Turbo Charged & CAC
Combustion System		Direct injection
Compression Ratio		17:1
Bore	mm	108
Stroke	mm	130
Displacement	L	7,15
Governing Type		Electronic
Governing Class		G3
Rotation		Counterclockwise
Firing Order		1-5-3-6-2-4
Emission		EU Stage 2
Filters		
Air Filter		Dry Type, replaceable
Fuel Filter		Element type, replaceable
Oil Filter		Element type, particulate trap
Electrical System		
Voltage	V	24
Starter	kW	5
Alternator Output Ampers	Α	100
Alternator Output Voltage	V	28
Batteries Capacity	Ah	2X85
Fan		
Diameter	mm	870
Drive Ratio		1:1
Number of Blades		9
Material		Composite
Type		Blowing
•		-

Cooling System

occining official			
Radiator Type	50°C	Tropical	
Total Coolant Capacity	L	32	
Max. Perm. Coolant Outlet Temperature	°C	105	
Max. Perm. Flow Resis. (Cool. System And Piping)	bar	0,5	
Max.Temperature of Coolant Warning	°C	98	
Max. Temperature of Coolant Shutdown	°C	103	
Thermostat Operation Temperature - Initial Open	°C	83	
Thermostat Operation Temperature - Full Open	°C	102	
Delivery of Coolant Pump	m ³/ h	4,08	
Min. Pressure Before Coolant Pump	bar	0,25	
Radiator Face Area	m²	0,65	
Rows	Row	2	
Matrix Density	Per / Inch	12	
Material		Aluminum	
Width of Matrix	mm	745	
Height of Matrix	mm	873	
Pressure Cap Setting	kPa	90	
Estimated Cooling Air Flow Reserve	kPa	0,125	
Engine Pre Heater Tube (with Circulation Pump)	W	2000	
Lubrication System			
Total System	L	29	
Minimum Oil Level	L	20	
Nominal Motor Operating Temperature	°C	58	
Lubricating Oil Pressure (Rated Speed)	bar	4,5	
Relief Valve Opens	kPa	250	
Oil / Fuel Consumption Ratio	%	0,03	
Normal Oil Temperature	°C	110	

Diesel Engine Matching Parameters

50 Hz @ 1500 r/min		Stand By
Gross Engine Power	kW	250,0
Net Engine Power	kW	238,0
Fan Power Consumption (Belt Pulley Driven)	kW	11,6
Other Power Loss	kW	-
Mean Effective Pressure	MPa	2800,00
Intake Air Flow	m ³ / min	16,30
Exhaust Temperature Limit	°C	550
Exhaust Flow	m ³ / min	33,40
Boost Pressure Ratio		26,00
Mean Piston Speed	m/s	6,5
Cooling Fan Air Flow	m ³ / min	240,0
Typical Generator Output Power	kVA	277

Heat Rejection		Stand By
Energy In Fuel (Heat Of Combustion)	kW	629,0
Gross Heat To Power	kW	250,0
Energy To Coolant And Lubricating Oil	kW	128,0
Energy To Exhaust	kW	177,0
Heat To Radiation	kW	26,0

231/400V - 50Hz

GENPOWER Alternator Technical Parameters and Specifications

Alternator Technical Parameters

Insulation Class		Н
Winding Pitch		2/3 - (N° 6)
Wires		12
Protection		IP 23
Altitude	m	1000
Overspeed	rpm	2250
Air Flow	m³/sec	0.514
Bearing Drive	N/A	-
Rotor Winding	100%	Copper

Field Control System		Self excited
A.V.R. Model	Standard	SX460
Voltage Regulation	%	± 1
Sustained Short-Circuit Current	10 sec	300% (3 IN)
Total Harmonic (*) TGH / THC	%	< 4
Wave Form :NEMA = TIF - (*)		< 50
Wave Form :I.E.C. = THF - (*)	%	< 2
Bearing Non - Drive	Bearing	6310-2RZ
Stator Winding	100%	Copper

(*) Total harmonic content line to line, at no load or full rated linear and balanced load

Genpower sychron alternators are produced according to TSE 60034-1; IEC 60034-22; GB755; BS4999-5000; NEMA MG 1.22 standards

Alternator Specifications

			50 Hz -	231/400V - Cos	s Q 0,8 - 1500 r	pm			
Standard Using Al	ternator			Optional Using	Alternator				
Brand/Model	Genpower	270L1		Leroy Somer	TAL046D		Stamford	S4L1DC	
Duty			Contin	luous			Stan	d By	
Ambient	C°		40°	°C			27	°C	
Class/Temp. Rise	C°		H / 12	25° K			H / 16	63° K	
Series Star (V)	V	380/220	400/231	415/240	1 Phase	380/220	400/231	415/240	1 Phase
Parallel Star (V)	V	190/110	200/115	208/120	220	190/110	200/115	208/120	220
Series Delta (V)	V	220	230	240	230	220	230	240	230
Output Power	kVA	255,0	255,0	265,0		280,0	280,0	291,0	-
Output Power	kW	204,0	204,0	212,0		224,0	224,0	233,0	

Control Panel Specifications

Powder Painted Steel Pannel with Lockable Door ATS (Automatic Transfer Panel) - Optional Control Module

Control Module Technical Parameters

Brand Dimensions Weight Ambient Humidity DC Battery Supply Voltage Network Frequency Generator Voltage Measurement Current Transformer Secondary Charge Alternator Voltage Measurement Communication Interface Generator Contactor Relay Output Solenoid Transistor Outputs Configurable-3 Transistor Outputs
Control Module Functions

Mains Voltage Level Control Network Frequency Level Control Engine Operating Option Control Engine Stop Option Control Engine Step Option Control
Engine Speed (RPM) Level Control
Battery Voltage Options Control Check Engine Maintenance Times Communication Interfaces GPRS, GSM Engine Speed

Control Module Alerts

Emergency Stop Malfunction High Generator Voltage Low Generator Frequency Low Load Over Current

Unbalanced Current

Sound Proof Canopy and Base Frame (Chassis) Specifications
Special, Registered GENPOWER Design and Color
Robotic Painting

A1 Quality DKP / HRU /Galvanized Steel Sensitive Twist on Automatic Press Brake Delicate Cut on Automatic Punch and Laser Bench Sensitive Welding on Robotic Welding Bench Chemical Cleaning Nano Technology Before Painting Special Products / Non - Standardized

Synchronised Systems Scada Systems Mobile Systems Light Towers Ground Power Unit Generators

Quality Documents & Certificates

Trademark Registration Certificate Capacity Report (32400 Units / Year) Made in Turkey Certificate- For Generator/1-5000 kVA Made in Turkey Certificate-For Alternator/1-5000kVA

Made in Turkey Certificate- For Engine/1-5000 kW Certificate of Competency for After Sales Services 2014/30/EU Electromagnetic Compatibility Directive CE Certificate - 2000/14/AT - 2000/14 EC (CE 2195) Battery Charger Emergency Stop Button Backlit, 128x64 Pixels

GENPOWER 120mm x 94mm 260 gr. 90% max 8 - 32 V 5 - 99,9 Hz 3 - 300 V 5A 8 - 32 V RS-232 5A & 250V 1A with DC Supply 1A with DC Supply

Generator Voltage Level Control Generator Frequency Level Control Generator Current Level Control Generator Power Level Control Generator Work Schedule and Timing Control Oil Pressure Controllers Control Configurable Analog Inputs and Outputs Keeping Error Records of Past Events Configurable Programmable Digital Inputs and Outputs

Low Generator Voltage High Generator Frequency Phase Sequence Error Overload Low Water Level (Optional) Low Oil Pressure

Current and Frequency

Robotic Painting with Electrostatic Powder Paint Drying and Stabilizing on 200°C Ovens 1500 Hour Salt Test

Glasswool Isolation, A1 Class Material -50/+500°C Special Covering Over Glass Wool Best Sound Level (in dBA)

Generators - with Trailer Medium Voltage - MV IP44-IP54 Class Generators Welding Machines Natural Gas Generator

Industrial Registry Certificate Certificate of Manufacturing Competence TSE- Service Adequacy Certificate ISO 9001 - 2015 Certificate ISO 14001 - 2015 Certificate OHSAS 18001 - 2007 Certificate 2006/42/EC Machinery Directive

Coatchem- Türkak 1500 Hours Corrosion Durability Test Certificate

Control Relays Terminal Blocks Load Output Terminal

Model Protection Class Environmental Conditions Ambient Temperature Battery Voltage Measurement Mains Voltage Measurement Generator Frequency Working Period Charge Alternator Excitation
Analog Sender Measurement Mains Contactor Relay Output Start Transistor Outputs Configurable-4 Transistor Outputs

3 phase Generator Protections

- High / Low Voltage - High / Low Frequency - Current / Voltage Asymmetry - Overcurrent / Overload

Overheat Control 1 Phase or 3 Phase, Phase Selection

Parameter Setting via Control Module Water Temperature Phase Sequence

Low Water Temperature Heat Sensor Broken Reverse Power Start Error Stop Error Magnetic Pickup Error

Temperature Tests Rustproof Accessories
Cable Exit Connectors and Glands Emergency Stop Button Fuel Level Gauge Fuel Drain Cap

DC Generators High Voltage - HV Power Plants Trigeneration Systems Biogas Generator

TSE 8528 - 4 Certificate TSE 8528 - 5 Certificate
TSE 8528 - 8 Certificate
TSE 8528 - 8 Certificate
AB-0547-T Certificate

FAC - GOST Certificate/ Diesel Generator EAC - GOST Certificate/ Gasoline Generator CE Certificate - EN ISO 17050-1,2004

System Protection MCBs Circuit Breaker - Optional LCD Screen

Trans-MIDIAMF.232.GP IP65 From the Front 2000 Meters Above Sea Level -20 ° C to + 70 ° C 8 - 32 V 3 - 300 V Phase-Neutral, 5 - 99.9 Hz 5 - 99.9 Hz Continuous 210mA & 12V, 105mA & 24V Nominal 2.5W 0 - 1300ohm 5A & 250V 1A with DC Supply 1A with DC Supply

3 phase AMF Function

- High / Low Frequency - High / Low Voltage - High / Low Water Temperature

- High / Low Load Mains, Generator ATS control

Network, Voltage, Frequency Display Parameter Setting via Computer Hours of Operation

Charge Alternator Error Unbalanced Load Maintenance Time Alarm Low Speed High Speed Broken Oil Sensor Cable

Fuel Inlet and Return Records Impermeability Test for Fuel Tank Vacummed Rubber Mounted High Quality Weatherstrips High Quality Shock Absorbers Fuel Filling Cap (with ventilation)

High Frequency Generators Variable Speed Generators Super Silent Canopy Cogeneration Systems LPG Generator

TS EN ISO 2409 Certificate TS EN ISO 2409 Certificate
TS EN ISO 4628-3 Certificate
TS EN ISO 4628-4 Certificate
TS EN ISO 4628-5 Certificate TS FN ISO 4628-8 Certificate TS EN ISO 9227 Certificate
TS 9620 EN ISO 4628-2 Certificate TS EN 60034 - 1 Certificate

Alarm Horn Heater Tube Thermostat Control

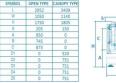
Modbus and SNMP Working Hour Ground Leakage Analog Modem Ethernet, USB, RS232, RS485 Selectable Protection Alarm / Shutdown Battery Voltage

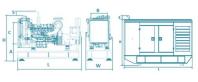
High Oil Temperature (Optional) Low Fuel Level (Optional) High Battery Voltage Low Battery Voltage High Water Temperature Electronic Canbus Errors (ECU)

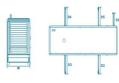
Lifting and Carrying Equipments Internal Exhaust Mufflers (Silencers)
External Exhaust Mufflers (Silencers) Radiator Water Filling Cap Daily Fuel Tank External Fuel Tank

Marine Generators **Dual Generators** Automatic Voltage Stabilizers Electrical and Diesel Forklift HFO Generator

EN ISO 8528-13.2016 Certificate EN ISO 12100:2010 Certificate EN ISO 13857:2008 Certificate EN ISO 14120:2015 Certificate FN 349-1993+A1-2008 Certificate EN 60204-1,2018 Certificate EN 61000-6-2,2019 Certificate EN 61000-6-4,2007/A1:2011 Certificate




231/400V - 50Hz


Generator Dimensions

Values		Open Type Generator	Canopy Type Generator
Width	mm	1050	1140
Length	mm	2592	3409
Height	mm	1750	1955
Weight (Empty)	Kg	1820	2194
Fuel Tank Capacity	L	256	455

Generator Technical Drawings

Diesel Engine and Genset Rating Classifications

The below ratings represent the engine performance capabilities to conditions specified in TS ISO 8528/1, 8528-4, 8528-5, 8528-8, BS5000, ISO 3046/1:1986, NEMA MG-1.22.1, BS 5514/1.

STAND BY POWER RATING (ESP):

ESP is applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. Under no condition is an engine allowed to operate in parallel with the public utility at the Stand By Power rating. This rating should be applied where reliable utility power is available. A Stand By rated engine should be sized for a maximum of an 70% average load factor and 200 hours of operation per year. This includes less than 25 hours per year at the Stand By Power rating. Stand By ratings should never be applied except in true emergency power outages. Negotiated power outages contracted with a utility company are not considered an emergency.

PRIME POWER RATING (PRP):

Applicable for supplying electric power in lieu of commercially purchased power. Prime Power applications must be in the form of one of the following two categories:

UNLIMITED TIME RUNNING PRIME POWER (ULTP):

PRP (Prime Power) is available for an unlimited number of hours per year in a variable load application. Variable load should not exceed a 70% average of the Prime Power rating during any operating period of 250 hours. The total operating time at 100% Prime Power shall not exceed 500 hours per year. A 10% overload capability is available for a period of 1 hour within a 12-hour period of operation. Total operating time at the 10% overload power shall not exceed 25 hours per year.

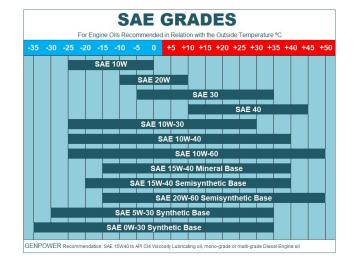
LIMITED TIME RUNNING PRIME POWER (LTP):

LTP (Limited Time Prime Power) is available for a limited number of hours in a nonvariable load application. It is intended for use in situations where power outages are contracted, such as in utility power curtailment. Engines may be operated in parallel to the public utility up to 750 hours per year at power levels never to exceed the Prime Power rating. The customer should be aware, however, that the life of any engine will be reduced by this constant high load operation. Any operation exceeding 750 hours per year at the Prime Power rating should use the Continuous Power rating.

CONTINUOUS POWER RATING (COP):

COP is the power that the engine can continue to use under the prescribed speed and the specified environment condition in the normal maintenance period stipulated in the manufacturing plant. And Continuous Power is applicable for supplying utility power at a constant 100% load for an unlimited number of hours per year. No overload capability is available for this rating.

PAY ATTENTION to the points below in picking and using the generator


- * Generators can work on Continuous Power at 70% of Prime power value if only all maintenances are done on time with original spare parts and high quality oils that manufacturer advice.
- * Generators should not operate below 50% of Prime Power value. In such a case, the engine will burn excessive oil and eventually have irreparable damage
- * If your need is 1000 kVA or above, you should prefer Synchronic Systems with 2-3 generators with failure back up and simultaneous aging.
- * These points will provide advantage for you with purchasing and operating the generator

Fuel Consumption - Oil Recommendation and Oil Grades

Fuel Consumption				
Percent of Prime power	l/hr			
110%	60,2			
100%	54,0			
75%	43,0			
50%	30.8			

Note:The density of diesel is 0.835 kg/L

Fuel specification: BS 2869: Part 2 1998 Class A2 or (DIN EN 590) ASTM D975 D2 Diesel. The fuel must be clean and without water)

Why You Should Buy **GENPOWER**?

Only because it is the biggest generator factory in the World? NO!

- * It is one of the most trustworthy and distinguished generator manufacturers in the world with its almost half century experience in the field.
- * It has interiorized the strategy of unconditional customer satisfaction and has been working with this work ethic together with its whole crew.
- * Customers and end users get their moneys' worth and more with every penny.
- * It has become a big family with customers and users who receive durable, long-lasting and high quality products.
- * It has been appreciated many times by customers and suppliers about the investments that have been made for quality enhancement.
- * Both its suppliers and customers always know GENPOWER is and will always be there for them. GENPOWER on their side in bad and good days.
- * In order not to harm brand reputation and recognition, each day, they work harder than the day before.
- * It continues its business only with the suppliers, customers, dealers and technical services that also embrace the same mind set and work ethics.
- * It proves its loyalty for quality and customer satisfaction with its mottos "Your power is the core of our business" and "nothing will be left unfinished"
- * The specifications and/or modifications you can receive with extra costs by other manufacturers are included in standard production in GENPOWER
- * When you purchase GENPOWER products, you are not a customer or a buyer but GENPOWER perceives and accepts you as a valuable member of its continuously growing family.

These are why you should buy from **GENPOWER**...

